Subject Code: R13210/R13

Set No - 1

I B.Tech II Semester Supplementary Examinations Dec./Jan. - 2015/2016 ENGINEERING MECHANICS
 (Common to ECE, EEE, EIE, Bio-Tech, E Com E, Agri E)

Time: 3 hours
Max. Marks: 70
Question Paper Consists of Part-A and Part-B Answering the question in Part-A is Compulsory, Three Questions should be answered from Part-B

PART-A

1. (a) Find the unit vector of the force $\mathrm{F}=4 \mathrm{i}-5 \mathrm{j}+8 \mathrm{k}$.
(b) What is the principle of transmissibility?
(c) Use Pappus theorem to find the volume of a sphere of radius r.
(d) State the Parallel axis theorem.
(e) State the condition for the dynamic equilibrium of a body under translation.
(f) What is instantaneous centre of rotation in plane motion?

PART-B

2. (a) A block weighing 1000 N is kept on a rough plane inclined at 40° to the horizontal. The coefficient of friction between the block and the plane is 0.4 . Determine the smallest (least) force inclined at 15^{0} to the plane required just to move the block up the plane.
(b) A frame is loaded as shown in Fig. 1. Find the support reactions.

Fig. 1

1 of 3

Subject Code: R13210/R13

Set No - 1

3. (a) Forces $32 \mathrm{kN}, 24 \mathrm{kN}, 24 \mathrm{kN}$, and 120 kN , are concurrent at the origin and are respectively directed through the points whose coordinates are $\mathrm{A}(2,1,6), \mathrm{B}(4,-2-5), \mathrm{C}(-3,-2,1)$, and $\mathrm{D}(5,1,-2)$. Determine the resultant.
(b) State and prove Varignon's theorem.
4. (a) Calculate the moment of inertia of the section shown in Fig. 2 about its centroidal $x x$ and yy axis.

Fig. 2
(b) State and prove perpendicular axis theorem.
5. (a) Find the mass moment of inertia of a thin circular disc $\left(l_{x x}, l_{y y}\right.$, and $\left.l_{z z}\right)$.
(b) Locate the centroid for the area shown in Fig.3.

Fig. 3

Subject Code: R13210/R13

6. (a) Two cars A and B are travelling in adjacent highway lanes. At an instant of time, their positions and speeds are as shown in Fig.4. If car A has constant acceleration of $0.8 \mathrm{~m} / \mathrm{s}^{2}$ and car B has a constant deceleration of $0.5 \mathrm{~m} / \mathrm{s}^{2}$, determine
(i) When and where car A will overtake car B and
(ii) The speed of each car at that time.

Fig. 4
(b) What is the angle turned by a wheel while it starts from rest and accelerates at a constant rate of $3 \mathrm{rad} / \mathrm{s}^{2}$ for an interval of 20 sec . ?
7. (a) Define impulse-momentum principle.
(b) Define work energy equation.

